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Axisymmetric Problems

The evolution of the particles of a compressible fluid in a Lagrangian reference frame is governed
by the following system of differential equations:

Euler’s Equations

Momentum Conservation: ρ
d~v

dt
= ∇ · σ

Mass Conservation:
1

ρ

dρ

dt
= −∇ · ~v

Energy Conservation: ρ
de

dt
= σ : ∇~v

Equation of State: p = EOS(e, ρ)

Equation of Motion:
d~x

dt
= ~v

For 3D problems with axial symmetry, the reduction to a 2D meridian cut Γ provides a
significant computational advantage

Maintaining both symmetry preservation and energy conservation has proven challenging

We will present an extension of our general finite element framework from Part I, which
conserves total energy by construction while maintaining good symmetry.
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What Can Go Wrong?

Axisymmetric ICF Test

ICF-like implosion with
radial pressure drive.

Unstructured butterfly
mesh with symmetric
initial conditions.

Axis jet is numerical
and gets worse as mesh
is refined.

Axisymmetric Spherical Sedov Test

Spherical Sedov blast wave in axisymmetric mode.

Total energy should remain 1.0 for all time.

Traditional SGH methods use the Wilkin’s area
weighted approach for computing accelerations

This preserves symmetry of accelerations but the
corresponding energy update may not be conservative.

6% spurious gain in energy leads to incorrect shock
speed and does not improve under mesh refinement.

Symmetry breaking and lack of energy conservation lead to non-physical results
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Overview of Axisymmetric Methods

Staggered-grid hydro (SGH) methods

M. L. Wilkins, Calculations of elastic-plastic flow, Meth. Comput. Phys., 3, 1964.

P. Whalen, Algebraic limitations on two dimensional hydrodynamics simulations, J. Comput.
Phys. 124, pp. 46-54, 1996.

E. Caramana, D. Burton, M. Shashkov and P. Whalen, The construction of compatible
hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146,
pp. 227–262, 1998.

L. Margolin and M. Shashkov, Using a curvilinear grid to construct symmetry-preserving
discretizations for Lagrangian gas dynamics, J. Comput. Phys. 149, pp. 389-417, 1999.

A. Barlow, D. Burton and M. Shashkov, Compatible, energy and symmetry preserving 2D
Lagrangian hydrodynamics in rz cylindrical coordinates, Proc. Comp. Sci., 1(1), ICCS 2010,
pp. 1893–1901, 2010.

Finite element-based methods

P. Matejovic and V. Adamik, A one-point integration quadrilateral with hourglass control in
axisymmetric geometry, Comp. Meth. Appl. Mech. Eng., 70(3), pp. 301–320, 1988.

P. Matejovic, Quadrilateral with high coarse-mesh accuracy for solid mechanics in
axisymmetric geometry, Comp. Meth. Appl. Mech. Eng., 88(2), pp. 241–258, 1991.

Cell-centered methods

P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible
fluid flows on unstructured meshes, J. Comput. Phys., 228 (7), pp. 2391–2425, 2009.
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Position and Strong Mass Conservation

We introduce a 2D Curvilinear FEM mesh on Γ(t) with zones Γz (t) and denote
the 2D position vector, parametric mapping and Jacobian with x(t), Φz and Jz .

Axisymmetric strong mass conservation

Let Ω′(t) be the revolution of an arbitrary set Γ′(t) ⊂ Γ(t). Then∫
Ω′(t)

ρ(t) =

∫
Ω′(t0)

ρ(t0) −→ 2π

∫
Γ′(t)

rρ(t) = 2π

∫
Γ′(t0)

rρ(t0)

Therefore the strong mass conservation principle in RZ takes the form

r(t)ρ(t)|Jz (t)| = r(t0)ρ(t0)|Jz (t0)|

Axisymmetric mass matrices

Let w and φ be the kinematic and thermodynamic finite element basis functions on Γ.

Define the weighted axisymmetric mass matrices

Mrz
v =

∫
Γ(t)

rρwwT and Mrz
e =

∫
Γ(t)

rρφφT

The RZ strong mass conservation principle implies that these are constant in time:

dMrz
v

dt
= 0,

dMrz
e

dt
= 0
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Axisymmetric Momentum Equation

Reducing the 3D momentum equation to the axisymmetric cut plane Γ we get∫
Ω(t)

(
ρ
d~v

dt

)
· ~wi = −

∫
Ω(t)

σ : ∇~wi −→ ↘2π
∫

Γ(t)
r

(
ρ
d~v

dt

)
· ~wi = −↘2π

∫
Γ(t)

r σrz : ∇rz ~wi

Axisymmetric tensors
The axisymmetric gradient of a vector field is given by

∇rz~v =

 ∂vz
∂z

∂vz
∂r

0
∂vr
∂z

∂vr
∂r

0
0 0 vr

r


z−r−θ

=

(
∇2d~v 0

0 vr
r

)
Therefore, for σ = −pI + µ∇~v , the axisymmetric stress tensor is

σrz =

(
−pI + µ∇2d~v 0

0 −p + µ vr
r

)
The axisymmetric momentum equation then becomes∫

Γ(t)
r

(
ρ
d~v

dt

)
· ~wi = −

∫
Γ(t)

r

(
σ2d 0

0 −p + µ vr
r

)
:

(
∇2d ~wi 0

0 wr
r

)

= −
∫

Γ(t)
r(σ2d : ∇2d ~wi )−pwr + µ

vr wr

r

The 1
r

term is never evaluated at r = 0 (quadrature points are interior and limr→0
vr wr

r
= 0).
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Therefore, for σ = −pI + µ∇~v , the axisymmetric stress tensor is

σrz =

(
−pI + µ∇2d~v 0

0 −p + µ vr
r

)

The axisymmetric momentum equation then becomes∫
Γ(t)

r

(
ρ
d~v

dt

)
· ~wi = −

∫
Γ(t)

r

(
σ2d 0

0 −p + µ vr
r

)
:

(
∇2d ~wi 0

0 wr
r

)

= −
∫

Γ(t)
r
[
(σ2d : ∇2d ~wi )− p

wr

r
+ µ

vr wr

r2

]
The 1

r
term is never evaluated at r = 0 (quadrature points are interior and limr→0

vr wr
r

= 0).
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Axisymmetric Stress Tensor

σ(~x) = −p(~x)I + σa(~x) + s(~x)

Artificial viscosity
Consider our default option: σa = µ~s1

ε(~v).
Shock direction, ~s1, directional length scale `~s1

and measure of compression, ∆~s1
~v , are

computed the same way as in 2D (ignore the ~eθ eigenvector).
Vorticity/compression measure uses RZ gradient: ψ0 = |∇rz · ~v |/‖∇rz~v‖.

Stress deviator
The axisymmetric stress deviator matrix has the form

s =

szz szr 0
srz srr 0
0 0 sθθ


z−r−θ

=

(
s2d 0
0 sθθ

)
with szr = srz and sθθ = −(szz + srr ) since srz is symmetric and traceless.

The semi-discrete stress deviator equation is

ds2d

dt
= grz ≡ 2µs

(
ε2d (~v)−

1

3
∇rz · ~v

)
+

s2d (∇2d~v − ~v∇2d )− (∇2d~v − ~v∇2d )s2d

2

We do not keep track of sθθ, since the plastic-yield factor can be computed directly:

f (s,Y ) =

√
2

3

Y 2

Tr(s2)
=

√
Y 2

3(s2
zz + szz srr + s2

rr + s2
rz )
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Semi-discrete Axisymmetric Method

Axisymmetric generalized corner
force matrix:

(Frz)ij =

∫
Γ(t)

r (σrz : ∇rz ~wi )φj

Axisymmetric stress deviator rate:

(grz
mn)j =

∫
Γ(t)

rρ (grz )mn φj

Semi-discrete axisymmetric finite element method

Momentum Conservation: Mrz
v
dv

dt
= −Frz · 1

Energy Conservation: Mrz
e
de

dt
= (Frz)T · v

Equation of Motion:
dx

dt
= v

Stress Deviator Rate: Mrz
e ·

ds

dt
= grz

By strong mass conservation, we get exact semi-discrete energy conservation:

dE

dt
=

d

dt

(∫
Ω(t)

ρ
|~v |2

2
+ ρe

)
=

d

dt

(
2π

∫
Γ(t)

rρ
|~v |2

2
+ rρe

)

= 2π
d

dt

(
v ·Mrz

v · v
2

+ 1 ·Mrz
e · e

)
= 2π

(
−v · Frz · 1 + 1 · (Frz)T · v

)
= 0.

This holds for any choice of velocity and energy spaces!
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Axisymmetric Sedov Explosion

40x40 Lagrangian SGH - Density

Symmetry is not preserved

Mesh distorted near the origin

20x20 Lagrangian FEM - Density

Symmetry is preserved

Curvilinear zones match physics

FE pressure treatment
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Axisymmetric Sedov - Scatter Plots

Coarse Mesh Scatter Plot of Density vs Radius

SGH shock is too fast

FEM is good with only 20x20 zones

Fine Mesh Scatter Plot of Density vs Radius

SGH does not improve under refinement

FEM matches exact solution very closely
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Axisymmetric Sedov - Energy Conservation

Comparison of Energy Conservation
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SGH gains 6% energy

BLAST conserves energy to machine precision

BLAST Energy Transfer
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BLAST converts IE to KE without loss
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Simple Velocity Driven ICF-like Test

Internal Energy

log(Density)

ALE Staggered Grid Hydro

Internal Energy

log(Density)

Pure Lagrangian FEM

S. Galera, P-H. Maire, J. Breil, A two-dimensional unstructured cell-centered multi-material ALE scheme using

VOF interface reconstruction, JCP, 2010.
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Axisymmetric Elastic-Plastic Shock Wave

Axisymmetric version of the problem from Talk I

Q3Q2-RK4 method on highly unstructured 2D mesh

1D symmetry is preserved

No artifacts at axis of rotation
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Parallelism in Our Research Codes

Our Research Codes

BLAST: C++ high-order curvilinear FEM
Lagrangian hydrocode. Solves XY/RZ/3D
problems on tri/quad/tet/hex meshes with
many finite element options.
www.llnl.gov/CASC/blast

MFEM: modular C++ finite element library.
mfem.googlecode.com

GLVis: OpenGL visualization tool.
glvis.googlecode.com

BLAST algorithm

Read mesh, material properties and input parameters
Loop over time steps:

- Loop over the zones in the domain:
- Loop over quadrature points in each zone:

- Compute hydro forces associated with the quadrature point
- Assemble zone contribution to global linear system and rhs
- Solve global linear system for new accelerations
- Integrate accelerations in time to get velocities and new mesh positions
- Update internal energies due to hydrodynamic motion

Two layers of parallelism:
MPI-based parallel finite elements in MFEM – domain-decomposed between CPUs
CUDA-based parallel corner forces in BLAST – zone-decomposed on GPUs
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First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh

Parallel finite element space

Parallel stiffness matrix and load vector
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MPI-based parallel finite elements in MFEM

Parallel mesh

−→
(1)

−→
(2)

(1) Parallel mesh splitting (domain decomposition using METIS).
(2) Parallel mesh refinement.

Parallel finite element space

Parallel stiffness matrix and load vector
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MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh
Parallel finite element space

−→
(1)

−→
(2)

(1) Find shared degrees of freedom (dofs).
(2) Form groups of dofs and assign ownership.
(3) Build a parallel Boolean matrix P = dofs truedofs identifying each dof with a master (true) dof.

We use the ParCSR format in the hypre library for parallel matrix storage.

Parallel stiffness matrix and load vector
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MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh

Parallel finite element space

Parallel stiffness matrix and load vector
(1) Assemble the stiffness matrix in each processor and form a block-diagonal matrix Adofs.

(2) Compute A = PTAdofsP (using hypre’s RAP).
(3) Form bdofs by assembling the load vector in each processor.

(4) Compute b = PTbdofs.
(5) Global problem: Ax = b.
(6) Restriction to each processor: Px.

No explicit communications needed!
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Parallel Sedov Blast in 2D

640× 640 grid on 256 processors with uniform Cartesian partitioning

Shown are the processor subdomains and the mesh inside one of the processors

The shock is resolved in a singe zone
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Parallel Weak Scalability in 3D

Fixed problem size per processor (83)

Shown is the 643 grid on 512 processors
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Parallel Noh Implosion in 2D

512× 512 grid on 128 processors with non-uniform partitioning (from METIS).

Shown are the processor subdomains and the mesh inside one of the processors

The shock is resolved in a singe zone
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Parallel Strong Scalability in 3D

Fixed total problem size

Shown is the 323 grid on 128 processors

Good performance on 512 processors with
only 64 zones/processor

1 2 4 8 16 32 64 128 256 512
Number of processors

20

21

22

23

24

25

26

27

28

29

A
v
e
ra

g
e
 i
te

ra
ti

o
n
 s

p
e
e
d
u
p
 (

lo
g
 s

ca
le

)

perfect scalability

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 19 / 30



Second Parallel Layer: GPU/CUDA Zone Decomposition

GFLOPs Bandwidth

GPUs offer unprecedented computational power and memory bandwidth.

Profiling results show that zonal calculations, such as the computation of the corner force
matrix, have high flops/bytes ratios and are the dominant cost in BLAST.

Together with Tingxing Dong (UTK), we developed a second, CUDA-based, parallel layer in
BLAST to assist the CPU with some of these computations.
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CUDA Kernels in BLAST

Consider the semi-discrete finite element method in BLAST (without strength):

Momentum Conservation:
dv

dt
= −M−1

v F · 1

Energy Conservation:
de

dt
= M−1

e FT · v

Equation of Motion:
dx

dt
= v

We used CUDA to accelerate the following computations on the GPU:

1 Evaluation of F.

2 Evaluation of F · 1 and FT · v.

3 CG solver for M−1
v and sparse matvec for M−1

e based on CUBLAS/CUSPARSE.

Zonal corner forces {Fz} and the sparse matrices Mv and M−1
e are stored on the GPU.

Input/output vectors are transferred between the CPU and the GPU.
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Generalized Corner Forces on the GPU

F can be assembled from {Fz}, which require a high order quadrature {(αk , ~̂qk )}k :

(Fz )ij =

∫
Ωz (t)

(σ : ∇~wi )φj ≈
∑

k

αk σ̂(~̂qk ) : J−1
z (~̂qk )∇̂~̂wi (~̂qk ) φ̂j (~̂qk )|Jz (~̂qk )| .

Two-level concurrency: hydro forces for each zone (different z) and each quadrature point
(different k) can be computed in parallel.

Note that Fz = AzBT
z , where

(Az)ik = αk σ̂(~̂qk ) :J−1
z (~̂qk )∇̂~̂wi (~̂qk )|Jz (~̂qk )| and (Bz)jk = φ̂j (~̂qk ) .

CUDA Kernel 1: loop over the quadrature points
Each thread block corresponds to one or more zones (tunable).

Each thread works on one quadrature point and computes a column of the matrix Az.

The weights αk do not change in time and are kept in GPU’s constant memory.

CUDA Kernel 2: loop over the zones

Each thread block corresponds to one zone and performs the multiplication AzBT
z .

Each thread evaluates one row of the resulting matrix Fz (a kinematic dof).

We store Az in the shared and Bz in the constant GPU memory (hinted by the profiler).
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Serial GPU Performance

Tesla C1060

CPU: Xeon E5520

Tesla C2050

CPU: Xeon X5660

Quadro 5000

CPU: Xeon X5675

Compare CPU and CPU+GPU code on one processor.
Three test problems: 2D Q2Q1, 2D Q3Q2 and 3D Q2Q1.
Good speedup across several different CPU/GPU pairings.
GPU implementation required replacing LAPACK calls with hand-coded eigensolvers for
2× 2 and 3× 3 matrices, which also accelerated the CPU code significantly (2–4×).

High ratio of kernel time to memory transfer.
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Parallel GPU Performance

MPI+CUDA on Tesla C2050

Compare MPI and MPI+GPU code on
1, 2 and 4 processors.

Different floating point CPU/GPU
implementation lead to slight
differences in the numerical results.

MPI Result on 4 CPUs

MPI Result on 4 CPUs + 2 GPUs
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2D Shock triple-point interaction

S. Galera, P-H. Maire, J. Breil,

A two-dimensional unstructured cell-centered

multi-material ALE scheme using VOF interface

reconstruction, JCP, 2010.

Curved zones with high aspect ratios develop naturally in Lagrangian simulations and are
impossible to represent using elements with straight edges
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Parallel shock triple-point interaction

Run on 128 processors with non-uniform partitioning (from the METIS graph partitioner)
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Parallel shock triple-point interaction

Parallel subdomains undergo significant deformations.
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Parallel high-order shock triple-point interaction

Compare Q2Q1-RK2Avg,
Q4Q3-RK4, Q8Q7-2×RK4.

Same number of unknowns,
12 CPUs, t = 3.3.

Q4/Q2 Q8/Q2

tcycle 2.15 13.9
ncycles 0.76 0.75

|{~̂qk}| 62/42 122/42

nnz(Mv) 2.24 6.19

Directional length scale is
divided by polynomial order.

Higher order methods are
more efficient than expected.

One of the Q8 basis functions

Q2Q1

Q4Q3

Q8Q7
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Parallel high-order shock triple-point interaction

Q2Q1

Az is 18 × 16
Bz is 4 × 16

Fz flops/bytes ≈ 29

Q4Q3

Az is 50 × 36
Bz is 16 × 36

Fz flops/bytes ≈ 248

Q8Q7

Az is 162 × 144
Bz is 64 × 144

Fz flops/bytes ≈ 3848
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Axisymmetric shock triple-point interaction
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Parallel 3D shock triple-point interaction

Initial 3D mesh is
unstructured in the
z-orthogonal plane

Parallel run on 10
processors with the
Q2Q1-RK2Avg method.

Circular arcs are fitted in
Q2 position dofs which
are then refined once.

Shown is the revolved
density in the three
materials (logarithmic
scale).
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Parallel 3D shock triple-point interaction

Unstructured parallel data decomposition.

The robustness of the curvilinear zones extends to 3D multi-material problems.
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Conclusions and Future Directions

Some benefits of our high order discretization methods:

More accurate capturing of flow features using curvilinear zones.

Exact total energy conservation by construction.

Substantial reduction in mesh imprinting and improved symmetry preservation.

Same framework for 2D, 3D and axisymmetric problems.

Locally FLOP-intensive algorithms excel on modern parallel CPU+GPU architectures.

Future research directions:

NURBS-based hydro (collaboration with UCSD and LANL).

ALE: curvilinear mesh optimization; high-order field remap; multi-material zone treatment.

NURBS mesh in MFEM
representing a spherical shell.

Original (left) and smoothed (right) curvilinear mesh obtained
by high-order extension of local harmonic smoothing.
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